首页> 外文OA文献 >Unstable Entropies and Variational Principle for Partially Hyperbolic Diffeomorphisms
【2h】

Unstable Entropies and Variational Principle for Partially Hyperbolic Diffeomorphisms

机译:不稳定熵与部分双曲型变分原理   微分同胚

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study entropies caused by the unstable part of partially hyperbolicsystems. We define unstable metric entropy and unstable topological entropy,and establish a variational principle for partially hyperbolic diffeomorphsims,which states that the unstable topological entropy is the supremum of theunstable metric entropy taken over all invariant measures. The unstable metricentropy for an invariant measure is defined as a conditional entropy alongunstable manifolds, and it turns out to be the same as that given byLedrappier-Young, though we do not use increasing partitions. The unstabletopological entropy is defined equivalently via separated sets, spanning setsand open covers along a piece of unstable leaf, and it coincides with theunstable volume growth along unstable foliation. We also obtain some propertiesfor the unstable metric entropy such as affineness, upper semi-continuity and aversion of Shannon-McMillan-Breiman theorem.
机译:我们研究由部分双曲系统的不稳定部分引起的熵。我们定义了不稳定的度量熵和不稳定的拓扑熵,并建立了部分双曲形微分形变分的变分原理,指出了不稳定的拓扑熵是在所有不变测度上不稳定的度量熵的总和。不变测度的不稳定度量熵被定义为沿着不稳定流形的条件熵,事实证明它与Ledrappier-Young给出的条件熵相同,尽管我们不使用递增分区。不稳定拓扑熵是通过沿一片不稳定叶片的分离集,跨越集和开放覆盖等价定义的,它与不稳定叶面的不稳定体积增长相吻合。我们还获得了不稳定度量熵的一些性质,例如亲和性,上半连续性和Shannon-McMillan-Breiman定理的反感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号